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Abstract. We obtain a wide class of multidimensional polynomial potentials for which 
the Schrodinger equation allows the separation of variables in generalised ellipsoidal 
coordinates. 

It is well known that multidimensional quantum mechanical models with polynomial 
potentials play an important role in many fields of quantum physics. The study of the 
spectra of such models becomes essentially simple when the separation of variables 
in the Schrodinger equation is permissible. As an example, we refer to the well known 
cases of the spherical- and cylindrical-symmetric potentials. 

In addition to spherical and cylindrical coordinates, ellipsoidal ones are very useful 
for solving certain equations of mathematical physics. For example, in Mardoyan et 
al (1985) the multidimensional harmonic oscillator in ellipsoidal coordinates has been 
studied in detail. Unfortunately, until recently tliese coordinates had not been con- 
sidered in connection with quantum mechanical problems with polynomial anharmon- 
icity. The first step in this direction was made, apparently, in the work of Turbiner 
and Ushveridze (1986), where the most general form of two-dimensional polynomial 
potentials allowing the separation of variables in ellipsoidal and parabolic coordinates 
was presented. 

In the present paper, which is quite independent of the above-mentioned work, we 
consider the multidimensional case. We show that there exists a wide class of multi- 
dimensional polynomial potentials without any spherical or cylindrical symmetry, for 
which the Schrodinger equation 

( - g + " - E  I = 1  ax, ) * = o  

can be reduced to the system of one-dimensional spectral equations by means of 
separation of variables in generalised ellipsoidal coordinates. The three-dimensional 
case of these coordinates is described in Korn and Korn (1961). 

The connection between the Cartesian, {x!}, and the generalised (multidimensional) 
ellipsoidal coordinates, which we denote by { A t } ,  can be expressed as follows: 

N N - 1  

k = l  k =  I . k # i  
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Here a, are constants determining the intervals in which the A ,  coordinates change, 
a,  < A I  < a 2 <  A , < .  . . < a N  < A N  <m. (3) 

In the new variables the Schrodinger equation (1) assumes the form 

where 

In order to investigate the possibility of separation of variables in equation (4), let 
us introduce the special function 

invariant under all transformations of the permutation group. 

Statement 1. If -( N - 1) s L < 0, then the function fL”(A) is identically zero, and if 
L Z= 0, f L N ’ ( A )  is the Lth-order polynomial of the form 

Here f , , , . , l L  are constants and 

are the elementary symmetric polynomials. 

Proof: Let I and J be arbitrary fixed numbers, I # J. Introducing the function 

we can rewrite formula (6) in the following form: 

k f 1 , k Z . l  

From the representation (10) it follows that the function f i N ) ( h )  remains finite if A I  
tends to A j .  The fact that the finiteness off iN)(A) is fulfilled for any I and J implies 
that this function is regular everywhere. 

On the other hand, from the definition (6) it follows that the function f iN)(A) 
can be represented as a fraction whose numerator is a homogeneous polynomial of 
[ N ( N - l ) + L ] t h  order. The denominatdr of this fraction is also a homogeneous 
polynomial of [ N ( N -  I)]th order and has the form nick ( A , - & ) * .  We can see that 
it vanishes if A,  = A k .  The fact that the function fL”(A) = 0 has no poles means that 
the numerator in the fraction can be divided by the denominator without remainder. 
Hence f[”(A ) = 0 if -( N - 1) s L < 0, and fL”(h) is the Lth-order polynomial when 
L Z= 0. Since f L N ’ ( A  ) is invariant under all transformations of the permutation group, 
it can be expressed via the elementary symmetric polynomials defined by (8). Thus 
statement 1 is proved. 
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It is not difficult to calculate several first functions f : " ( A ) .  They are 

f , $ " ( A )  = 1 

f l N ' ( A )  = ui(A) 
~ : " ( A ) = C : ( A ) - ( T ~ ( A )  

f :  N ) (  A ) = U:( A ) - 2 ~ 1  ( A  )U,( A ) + (~3( A ). 

Statement 2. If the potential V in the A coordinates has the form 

then in the initial x coordinates it is a polynomial. 

Proof: From definition (2) it follows that 
N N 

(-l)"a:cr,(A)=xf n ( a k - a , ) .  
n = 1  k f i  

These relations can be considered as the linear equations for u, , (A) .  Solving system 
(13) we obtain 

where ~ ! , ~ ' ( a )  are defined as the nth-order symmetric polynomials of 
a , ,  a2 , .  . . , ak-1, a k + l , .  . . , a N .  According to statement 1 the potential v depends 
polynomially on a , , ( A ) ,  and, hence, it is the Lth-order polynomial of x i .  The statement 
is proved. 

For several values of n in (14) we obtain 
( i )  N = 2  

u l ( h )  = (x: + x i )  + ( a ,  + a,) 

u 2 ( A ) =  ( a 2 x ~ + a , x ~ ) + a l a 2  

(i i)  N = 3  

Statement 3. If the potential V in A coordinates has the form (12), the Schrodinger 
equation (4) allows the separation of variables. 

Proof: According to statement 1, the constant E can be represented in the form 

Substituting (17) and (12) into (4) and taking 

CC, = CC,,(Ai) . . . J / N ( A N )  
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one obtains the system of one-dimensional spectral equations 

Here the energy E is the spectral parameter of the initial problem, and r, are the 
separation constants playing the role of the auxiliary spectral parameters of system 
(19). Thus the statement is proved. 

Letting 

and using (6), ( 7 )  and (12) we get 

Substituting (15)  and (16) into ( 1 1 )  and (21) we obtain the explicit form of the 
potentials in x representation, allowing the separation of variables in generalised 
ellipsoidal coordinates. 

Now let us consider concrete examples of potentials for which the separtion of 
variables in A coordinates is permissible. 

( i )  Two-dimensional quartic anharmonic oscillator, N = 2, L = 2: 

V -  (x: + x:)~+ A , x : +  A,X: 

with arbitrary A ,  and A 2 .  
(ii) Three-dimensional quartic anharmonic oscillator, N = 3, L = 2: 

V -  (x:+ x:+ x:)~ + A,X: + A ~ X :  + A ~ X :  

with arbitrary A , ,  A2 and A , .  
(iii) Two-dimensional sextic anharmonic oscillator, N = 2, L = 3: 

V -  (x:+ xi), + (x:+ x: ) (AIx:+  A ~ x : )  + B,x:+ B ~ x :  (24) 

with A ,  , A 2 ,  B ,  and B2 such that 

B1 - B2 = a( A: - Ai) .  

( iv)  Three-dimensional sextic anharmonic oscillator, N = 3, L = 3: 

V - (x:+ x$+ x:)~ + (x:+ x:+ x : ) ( A , x : +  A,x:+ A ~ x : )  + B,x:+ B2xi-t B ~ x :  (26) 

with A I ,  A 2 ,  A , ,  BI , B2 and B3 such that 

B, - Bk = : ( A ,  - &)[AI + A , +  A3 +;(Ai  - & ) I  i, k = 1,2,3.  (27) 

The more complex potentials in higher dimensions can also be obtained without 
difficulties. Note that in cases (i)  and (ii) the separation of variables is permissible in 
coordinates A for which a ,  - a2 = A ,  - A2, while in cases (i i i )  and (iv) it is permissible 
in coordinates A for which a, - ak = ; ( A ,  - A k ) ;  i, k = 1,2,3.  
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